Diverse mechanisms of beta-catenin deregulation in ovarian endometrioid adenocarcinomas.

نویسندگان

  • R Wu
  • Y Zhai
  • E R Fearon
  • K R Cho
چکیده

Clinical and molecular findings suggest that the four major histological subtypes of ovarian carcinoma (serous, clear cell, mucinous, and endometrioid) likely represent distinct disease entities. Prior studies have shown that ovarian endometrioid adenocarcinomas (OEAs) often carry mutations in the CTNNB1 gene, which encodes beta-catenin, a critical component of the Wnt signaling pathway. However, the nature of other defects in the Wnt signaling pathway in ovarian carcinomas remains largely unknown. Thus, in 45 primary OEAs and two OEA-derived cell lines, we sought to comprehensively address the prevalence of and mechanisms underlying beta-catenin and Wnt pathway deregulation. CTNNB1 missense mutations were detected in 14 primary tumors. All mutations affected the NH(2)-terminal regulatory domain of beta-catenin, presumably rendering the mutant proteins resistant to degradation. Immunohistochemical studies revealed nuclear accumulation of beta-catenin in all but two tumors with CTNNB1 mutations. Two primary tumors lacking CTNNBI mutations showed strong nuclear immunoreactivity for beta-catenin. In one of the two tumors, biallelic inactivation of the APC gene was found. In the remaining 29 primary OEAs, unequivocal nuclear beta-catenin immunoreactivity was not observed, though a nonsense mutation in AXIN1 was observed in one tumor and a truncating frameshift mutation in AXIN2 was seen in another case. Both OEA-derived cell lines studied (TOV-112D and MDAH-2774) had elevated constitutive T-cell factor/lymphoid enhancer factor transcriptional activity. TOV-112D cells were shown to harbor mutant beta-catenin, whereas a missense AXIN1 sequence alteration was identified in MDAH-2774 cells. Collectively, our findings demonstrate frequent defects of the Wnt signaling pathway in a particular subtype of ovarian carcinomas, i.e., OEAs. Although mutations in the CTNNB1 gene are the most common mechanism of beta-catenin deregulation in OEAs, beta-catenin deregulation may also result from mutations in the APC, AXIN1, and AXIN2 genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IRS1 Regulation by Wnt/β-Catenin Signaling and Varied Contribution of IRS1 to the Neoplastic Phenotype*

Dysregulation of beta-catenin levels and localization and constitutive activation of beta-catenin/TCF (T cell factor)-regulated gene expression occur in many cancers, including the majority of colorectal carcinomas and a subset of ovarian endometrioid adenocarcinomas. Based on the results of microarray-based gene expression profiling we found the insulin receptor substrate 1 (IRS1) gene as one ...

متن کامل

Novel candidate targets of beta-catenin/T-cell factor signaling identified by gene expression profiling of ovarian endometrioid adenocarcinomas.

The activity of beta-catenin (beta-cat), a key component of the Wnt signaling pathway, is deregulated in about 40% of ovarian endometrioid adenocarcinomas (OEAs), usually as a result of CTNNB1 gene mutations. The function of beta-cat in neoplastic transformation is dependent on T-cell factor (TCF) transcription factors, but specific genes activated by the interaction of beta-cat with TCFs in OE...

متن کامل

Fibroblast growth factor 9 has oncogenic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas.

Wnt signaling plays a key role in development and adult tissues via effects on cell proliferation, motility, and differentiation. The cellular response to Wnt ligands largely depends on their ability to stabilize beta-catenin and the ability of beta-catenin to bind and activate T-cell factor (TCF) transcription factors. Roughly 40% of ovarian endometrioid adenocarcinomas (OEA) have constitutive...

متن کامل

FGF-20 and DKK1 are transcriptional targets of beta-catenin and FGF-20 is implicated in cancer and development.

beta-catenin is the major effector of the canonical Wnt signaling pathway. Mutations in components of the pathway that stabilize beta-catenin result in augmented gene transcription and play a major role in many human cancers. We employed microarrays to identify transcriptional targets of deregulated beta-catenin in a human epithelial cell line (293) engineered to produce mutant beta-catenin and...

متن کامل

Mammalian Target of Rapamycin Is a Therapeutic Target for Murine Ovarian Endometrioid Adenocarcinomas with Dysregulated Wnt/\(\beta\)-Catenin and PTEN

Despite the fact that epithelial ovarian cancers are the leading cause of death from gynecological cancer, very little is known about the pathophysiology of the disease. Mutations in the WNT and PI3K pathways are frequently observed in the human ovarian endometrioid adenocarcinomas (OEAs). However, the role of WNT/b-catenin and PTEN/AKT signaling in the etiology and/or progression of this disea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 61 22  شماره 

صفحات  -

تاریخ انتشار 2001